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ABSTRACT

In unpredictably varying environments, strategies that have a reduced variance in fitness can invade a population
consisting of individuals that on average do better. Such strategies ‘hedge their evolutionary bets’ against the variability
of the environment. The idea of bet-hedging arises from the fact that appropriate measure of long-term fitness is
sensitive to variance, leading to the potential for strategies with a reduced mean fitness to invade and increase in
frequency. Our aim is to review the conceptual foundation of bet-hedging as a mechanism that influences short- and
long-term evolutionary processes. We do so by presenting a general model showing how evolutionary changes are
affected by variance in fitness and how genotypic variance in fitness can be separated into variance in fitness at the level
of the individuals and correlations in fitness among them. By breaking down genotypic fitness variance in this way the
traditional divisions between conservative and diversified strategies are more easily intuited, and it is also shown that
this division can be considered a false dichotomy, and is better viewed as two extreme points on a continuum. The
model also sheds light on the ideas of within- and between-generation bet-hedging, which can also be generalized to be
seen as two ends of a different continuum. We use a simple example to illustrate the virtues of our general model, as
well as discuss the implications for systems where bet-hedging has been invoked as an explanation.
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I. INTRODUCTION

Individual organisms face a variety of challenges during their
lifetime: risks of predation, mortality due to unfavourable
conditions, and variability in availability of resources among
many others. Many of these challenges are unpredictable. To
be able to survive and reproduce, individuals often need to
exhibit adaptations that respond to the diversity of conditions
of life that they may encounter. When there is a predictable
relationship between a signal and fitness consequences, we
expect phenotypic plasticity to evolve (Pigliucci, 2001). When
they cannot be measured or predicted in advance, lineages
of individuals can increase in frequency if genotypes ‘hedge
their bets’ (Slatkin, 1974) or ‘spread the risk’ (den Boer,
1968). Loosely speaking, bet-hedging is beneficial because it
avoids worst-case scenarios such as a lineage of wet-adapted
individuals dying because of a rare dry year; if the best
genotype in the wet year always dies out during a drought it
cannot prevail in the long run. More precisely, a successful
lineage must survive and reproduce over a wider range of
environmental conditions than experienced by individual
organisms (including conditions that change over longer
periods of time than a generation). Arithmetic mean fitness
across environments, often used to describe reproductive
success at the level of the individual, is then not a sufficient
measure. In uncertain environments we expect adaptations
that make individuals not maximize their expected fitness,
instead; evolutionary predictions cannot be made without
taking into account the variance in fitness.

Our aim is to review the conceptual foundation of bet-
hedging as a mechanism that influences short- and long-term
evolutionary processes. The concept is based on metaphors
that have not always invoked the clearest thinking, and
we comment on some of these pitfalls. We will outline
the different contexts in which the concept is used and
explore their mathematical and conceptual relationships.
Importantly, we will point out that bet-hedging is not
a simple trade-off between the mean and the variance
of offspring production. Instead, there are three factors
whose interplay determines whether bet-hedging works: the
arithmetic mean, the expected variance for an individual,
and correlations in fitness among individuals, all measuring
aspects of reproductive success for a lineage. Bet-hedging
can bring about a benefit via any combination of the latter
factors, at the expense of the first.

(1) What is bet-hedging? Metaphors and core ideas

‘‘Don’t put all your eggs in one basket’’ is a common idiom,
with roots dating back to the 1700s (Ammer, 1992). The
saying clearly advises against investing all one’s assets in a
single line of effort. It is clear that uncertainty is needed for

this to make sense; otherwise one should put all the eggs in
the same, best-performing basket (or investment fund). In
evolutionary biology, an easy interpretation of this metaphor
is that strategies that literally spread eggs into different nests
will be favoured, perhaps because some nests fail completely
while others survive, and it cannot be predicted in advance
which will do so. However, is such ‘insurance against nest
failure’ (Byrne & Keogh, 2009) really bet-hedging?

Bet-hedging in evolutionary biology is usually defined
as a strategy or allele that increases the probability of its
fixation by lowering the variance of fitness even though
mean (arithmetic) fitness declines (Slatkin, 1974; Seger &
Brockmann, 1987; Philippi & Seger, 1989). In the simplest
case, consider a mother that lays two eggs, either in the same
nest or in two different ones. Each nest may flood (or in the
case of a frog, dry out), and all offspring in that nest then
die. There is no density dependence within a nest, nor do we
assume any reasons related to nest building or care that might
make it less efficient to raise offspring in two different nests.

If flooding events are independent (hitting each nest
with probability 0.5), then both strategies bring about
the expectation of one surviving offspring, but the ‘same-
nest’ mother will have either 0 or 2 surviving young,
while the ‘different-nest’ mother may produce 0 (with
probability 0.25), 1 (probability 0.5), or 2 (probability 0.25).
Taking the metaphor at face value, it tells us that the
latter genotype—that creates the mean 1 with a smaller
variance—should win over time. In this review we will
examine where, mathematically speaking, such a benefit
could come about. First, however, it is worth noting that
in the above oft-used example the variance is reduced but
the arithmetic mean is unchanged. A strict definition of
bet-hedging states that the bet-hedger should have paid a
cost of a reduced mean. This is not mere nit-picking. In the
empirical example of Byrne & Keogh (2009), polyandrous
frogs that spawned in different nests had a higher mean
offspring count, and bet-hedging is not really needed as the
main explanation of why females mated multiply. We will
explain below why, if predation risk is independent across
nests, even very small costs of reduced mean arithmetic fitness
may make bet-hedging not favour the multiple-nest mother.

‘‘A bird in the hand is worth two in the bush’’ is another
related idiom, originating in one of Aesop’s fables (Ammer,
1992); ‘‘I should indeed be a very simple fellow if, for
the chance of a greater uncertain profit, I were to forego
my present certain gain’’ (Aesop, 2004, p. 56). The usual
interpretation is that we have one thing of value in our
possession already, and it might not be worth sacrificing that
for the chance of getting something better (asset-protection
principle; Clark, 1994). If one extends the meaning such that
the contrast is not between something already gained versus
something greater that may be possible to gain, but instead
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between a sure fitness payoff and an unsure one (without any
assumption about a temporal order that one has been gained
already), it also works as a metaphor for bet-hedging. As we
will explain below, this metaphor refers to a slightly different
kind of bet-hedging than the ‘eggs in a basket’ metaphor.

(2) A standard example: temporally varying rainfall

Seger & Brockmann (1987) (see also Philippi & Seger, 1989)
presented a thought-provoking example to which we will
return numerous times throughout our review. Assume that
the environment can be either wet or dry during a generation
(e.g. a year for an annual plant). We consider four different
genotypes: a drought-resistant genotype which forms the dry-
year specialist (Adry), a wet-year specialist (Awet), a generalist
(Agen, also called a conservative bet-hedger), and finally a
diversified genotype which gives rise to both wet year and dry
year specialists (Adiv, called a diversified bet-hedger). None of
these can alter their development depending on the environ-
ment they grow in; instead, individuals with the Adiv genotype
develop into the wet- or dry-year specialist morph with a fixed
probability irrespective of the environmental conditions. We
assume haploid and asexual inheritance for simplicity, thus
Adiv offspring are again Adiv and can phenotypically differ
from their mother as they develop independently.

Table 1 lists the reproductive success of individuals of
each genotype in wet or dry years; for an annual organism
this is equivalent with fitness. The fitnesses in Table 1 are
interpreted as absolute fitness of an individual (scaled by
some constant). For our plant interpretation, a constant of
100 means that a plant of genotype Adry will produce 100 seed
of the same genotype in a dry year and 58 seed in a wet year.

Note that we assume that the generalist does reasonably
well regardless of environmental conditions, but on average
worse than either of the specialists. The diversified strategy’s
fitness values are obtained by assuming that the dry-year
morph is produced with a probability 0.44 (see Section II.3
for the relaxing of this particular assumption).

In this set-up where there is temporal but no spatial vari-
ability in the environment, i.e. all individuals experience
either a wet or a dry year, the strategy with the highest geo-
metric mean fitness will eventually prevail (Dempster, 1955;
Levins, 1968; Lewontin & Cohen, 1969; Seger & Brockmann,
1987; King & Masel, 2007). Thus, even though genotype
Agen has a lower arithmetic mean fitness, it will invade and

replace both a population of Adry and a population of Awet.
The generalist Agen is often called a ‘conservative’ bet-hedger
because its success is a result of giving up high success in
any year and instead avoiding very poor success in any
year. In other words, it fulfils the definition of bet-hedging
since a reduction in mean arithmetic fitness is accompanied
by a reduction in the genotypic variance in fitness (for this
genotype this variance is 0). This lifts its geometric mean
fitness above either Adry or Awet (see Section II.1e for the
relationship between arithmetic and geometric mean fitness).

The generalist genotype is, however, not the best possible
bet-hedger in this example. The last genotype (Adiv) will
invade and replace any population consisting of the other
three genotypes. This genotype employs a diversified strat-
egy, because it achieves a reduced genotypic variance in
fitness by producing both wet-year and dry-year specialists
within the same year. Depending on the circumstances, one
or the other type will be highly productive, and there is
never a year where the genotype does universally badly. This
genotype therefore ends up with a higher geometric mean
fitness than any of the other genotypes.

II. THE MATHEMATICS OF BET-HEDGING

The ideas of bet-hedging grew out of the appreciation of
treating fitness as a random variable. The fitness of geno-
types and individuals is not known in advance, but it can
be described by a probability distribution. In our rainfall
example above, the fitness of genotype Awet can be described
by its fitnesses achieved in dry and wet years, and the
associated environmentally determined probabilities (i.e. the
probability of a year being dry is P = 1/2). Treating fitness as a
random variable complicates predictions of both short-term
and long-term changes in allele frequencies. The general
model in the next section is based largely on Frank & Slatkin
(1990) and derivations of Rice (2008).

(1) Working towards the two advantages
of bet-hedging: reduced individual fitness variance
and reduced fitness correlation between individuals

Evolutionary models may predict how frequencies of alleles
change over time or determine which alleles will go to

Table 1. The genotypic absolute fitnesses in the rainfall model, where the environment in a given year is either dry or wet

Genotype

Adry Awet Agen Adiv

Dry, Pdry = 1/2 1 0.6 0.785 0.776
Wet, Pwet = 1/2 0.58 1 0.785 0.815
Arithmetic mean fitness (expected fitness, μ) 0.79 0.8 0.785 0.796
Geometric mean fitness 0.762 0.775 0.785 0.795

Adry is a dry-year specialist, Awet a wet-year specialist, Agen a generalist and Adiv a diversified genotype that produces the dry-year phenotype
with probability 0.44. For the calculation of the fitnesses of the diversified genotype see Section II.3. All references to properties of these
genotypes are used with subscripts as here.
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fixation. In a sense, the latter goal is a subset of the former,
since fixation is a particular type of change over time.
Nevertheless, the former goal is more directly related to
detecting ongoing natural selection in empirical systems,
whereas the latter is more related to developing ideas of
optimality—trying to predict what kinds of behaviour or
strategies we generally expect as a result of evolution, the
alternatives having been weeded out by natural selection.
Here we are interested in both approaches, as they differ in
which concepts or measures of fitness to use (see e.g. Lande,
2007, for some confusion surrounding this). In line with the
‘subset’ thinking above, we will first describe the short-term
changes and then proceed to extracting a fitness measure that
can be used for long-term predictions. If bet-hedging is seen
as the idea that evolution ‘‘proceed[s] via a trade-off between
the expected value and the variance of fitness’’ (Childs,
Metcalf & Rees, 2010, p. 3056), then this will be reflected in
both short-term and long-term evolutionary predictions.

Genotypic fitness can be described as the mean fitness
of all individuals of that genotype plus genotypic fitness
variance around this mean. We will proceed by breaking
this genotypic fitness variance down into two parts, variance
at the level of the individuals and correlations among these
individuals. This set-up helps to clarify the concepts of within-
and between-generation bet-hedging (Gillespie, 1974a, 1975;
Hopper, 1999) as well as conservative and diversifying
bet-hedging (Seger & Brockmann, 1987; Philippi & Seger,
1989). As before, we assume asexual haploid females.

(a) Short-term predictions

We consider a population of size N consisting of haploid
individuals carrying alleles A1 and A2 with respective
frequencies of q1 and q2 (these could correspond to Awet
and Adry in our drought example). To arrive at a model of
frequency change we first write the genotypic mean fitness
(Ri ) in a given generation (which is the mean of the absolute
fitness of individuals of a given genotype), i.e.

R1 = 1
Nq1

Nq1∑
j=1

(μ1 + α1,j ) = μ1 + ᾱ1, (1)

R2 = 1
Nq2

Nq2∑
j=1

(μ2 + α2,j ) = μ2 + ᾱ2. (2)

Here μ1 and μ2 are the expected absolute fitnesses (i.e. the
arithmetic mean) of an individual of genotype A1 and A2,
respectively. In addition αi,j denote the individual deviances
from this expectation within a particular generation, and
these random variables are assumed to have a (global) mean
of 0 and a variance of σ 2

i . In general we think of these devia-
tions arising from different conditions experienced during the
life of individuals. The expectations [μi and E(αi,j ), where E

denotes expectation, most easily thought of as an arithmetic
mean] are then calculated across all possible environments.
Note, however, that for a given year ᾱι need not be 0.

It follows that the expression for the average reproductive
success in the whole population is given by

R = q1R1 + q2R2. (3)

Assuming non-overlapping generations we get the
frequency of allele A1 after one generation;

q′
1 = q1E

[
R1

R̄

]
. (4)

Since reproductive successes are random variables, allele
frequencies and their changes also become random variables.
The expected change in the frequency of allele A1, given its
present frequency, is

E[�q1|q1] = E[q′
1|q1] − q1 = E

[
q1R1

R̄

]
− q1 (5)

= E

[
q1q2(R1 − R2)

R̄

]
.

Dealing with the expectation of a ratio of random variables
(as the one in the expectation above) can be difficult, but
with some assumptions we can expand this expectation as
a series. This is done by Gillespie (1974a, 1975), Frank &
Slatkin (1990) as well as others (Shpak, 2005; Shpak & Proulx,
2007; Rice, 2008; Rice & Papadopoulos, 2009), and we refer
to Appendix 1 for a more complete and easily accessible
derivation of this general model. Because the concepts of
bet-hedging refer to the first two moments of the series, we
follow this general research tradition and focus our attention
to the first two terms of the expansion. This means that the
following only holds approximately (for extensive discussion
of higher moments see Rice, 2008).

E[�q1|q1] = E

[
q1q2(R1 − R2)
q1R1 + q2R2

]
≈ E[q1q2 (R1 − R2)]

E[q1R1 + q2R2]

+ q1q2 (q2Var(R2) −q1Var(R1) + (q1 − q2)Cov(R1, R2))
E[q1R1 + q2R2]2

. (6)

The first term is the expected change excluding any
variation in the reproductive successes. This term is directly
proportional to the difference in mean reproductive success
of the two genotypes. The second part takes into account the
variance of the genotypic successes. We continue by making
the assumption that the average reproductive success for the
whole population is close to 1 (i.e. that E[q1R1 + q2R2] ≈ 1).
In addition we also observe that we can express the variance
and covariance terms in Equation 6 as

Var(R1) = ρ1σ
2
1 , (7)

Var(R2) = ρ2σ
2
2 , (8)

Cov(R1, R2) = ρ12σ1σ2, (9)

where the ρi denotes the correlation in the fitness
(reproductive success) of two randomly chosen individuals
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from the same year, measured across several years. ρ1 refers
to this correlation when both individuals are of genotype
A1, ρ2 to the correlation when both are of genotype A2,
and ρ12 to the correlation observed when one is A1 and the
other A2. If all the individuals of these sets (e.g. a particular
genotype) have the same reproductive success within years,
this correlation is 1 (temporal variation is obviously required
for to this to be measurable: for example, individuals of the
drought-adapted genotype (Adry) all perform well in dry years
and badly in wet years).

We can then write the expected change in the frequency
of allele A1 as:

E[�q1|q1] = q1q2{(μ1 − μ2) + (q2ρ2σ
2
2 − q1ρ1σ

2
1

+ (q1 − q2)ρ12σ1σ2)}. (10)

This is an approximation, and therefore will not hold
exactly for a wide range of models, but it is very useful
as a heuristic; we will exemplify it by returning explicitly
to our rainfall model. Also note that often models can be
transformed to fit the assumptions of this approximation.

In Equation 10, the expected direction and magnitude of
change is affected by three terms: the expected genotypic
fitnesses (arithmetic across all environments, which is also
the individual mean fitness, μi ), the variances in reproduc-
tive success at the individual level (σ 2

i ) and the correlation
of reproductive success between individuals (ρi ). This is an
important insight because a reduction in mean fitness can be
compensated by changes in either of these latter two terms,
and these have a direct relationship to the different types of
bet-hedging.

One consequence of fitness as a random variable is that it
creates ‘implicit’ frequency dependence that, as a net effect,
favours consistently performing genotypes (Seger & Brock-
mann, 1987; Frank & Slatkin, 1990; Lande, 2007). As we
have seen above, the genotypic variance of an allele affects
the evolutionary dynamics, and this happens more strongly
for abundant alleles (ρi × σ 2

i is multiplied by the frequency
qi ). To see where the importance of this variability in absolute
fitness comes about, we now turn to Jensen’s inequality and
the mathematical relationship between absolute and relative
fitness.

(b) Jensen’s inequality

Jensen’s inequality is a general statement that relates the
values of a concave function of an integral to the integral
of a concave function. This has important consequences for
expectations of random variables, since the integral of a
probability distribution is by definition the expectation of a
random variable. In Fig. 1 F (X ) is a concave function of X .
If X is distributed with some deviation around a mean value
μ then a downwards deviation in X decreases in F (X ) more
than an equally large increase in X increases F (X ). As a result,
the expected value of F (X ) will be less than the expected value
of F (X ) evaluated at the mean value of X , F (E[X ]) = F (μ):

E[F (X )] ≤ F (E[X ]). (11)

Fig. 1. Illustration of Jensen’s inequality. For a variable X with
mean μ, the negative deviations affect the mean of F (X ) more
(negatively, y-axis) than positive deviations.

With regards to bet-hedging, there are two different types
of concave functions that are invoked on a distribution of
absolute fitnesses: the function mapping absolute fitness to
relative fitness and the function mapping absolute fitness to
geometric mean fitness. The first is important in making
short-term predictions, the second in long-term predictions.

(c) Absolute genotypic fitness to relative fitness

By relative fitness we refer to a genotype’s fitness divided by
the population mean fitness. The relative fitness of allele A1
in a haploid system with two alleles (A1 and A2) is given by

W1,rel = R1

q1R1 + q2R2
(12)

which is a concave function of R1, with q2 = 1 − q1. If we
assume that the absolute fitness of A2 (R2) is 1, a higher R1
brings about a higher relative fitness for A1, but the shape of
this function depends on the frequency of the allele A1 (Fig. 2).
When allele A1 is rare (low q1), the relationship between R1
and relative fitness is almost linear. On the other hand, as its
frequency increases, the relationship becomes increasingly
concave: even if the absolute fitness of A1 happened to be
vastly superior to A2, it is hard to outcompete everyone
else (required for achieving good relative fitness) when most
others have the superior allele A1 as well. In such a case, if
there is variation in R1, negative deviations from its mean
reduce relative fitness more than positive deviations increase
it. This is what leads to the implicit frequency dependence of
the importance of variance in genotypic fitness (Equation 10,
see Fig. 3).

(d ) Long-term predictions

Does the implicit frequency dependence matter in the long
term? If the expected change in the frequency of an allele is
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Fig. 2. The map from absolute (R1) to relative fitnesses (W1,rel)
for different frequencies of allele 1. The concavity of the map
from absolute to relative fitness depends on the frequency of an
allele. Here we have assumed that one allele (with frequency
q2 = 1 − q1 ) has fixed fitness R2 at 1. The fact that the genotypic
fitness variance of an allele affects the evolutionary dynamics
(Equation 10) scaled by its frequency, comes about because of
this; for very low frequencies the map is almost linear, and then
the variance in absolute fitness does not have a disproportionate
effect on the relative fitness.

Fig. 3. The expected change in the frequency (E[�qdry|qdry],
Equation 10) of the dry-year-specialist allele (Adry) in
competition with the wet-year specialist (Awet) for all frequencies
of Adry (x-axis). We see clearly that the expected change exhibits
implicit frequency dependence (for qdry > 0.44 the expected
change is negative, while for qdry < 0.44 it is positive). In
addition we have plotted the exact changes in dry and wet
years; if years are always dry the allele will always increase.

positive (or negative) across all frequencies (i.e. if Equation 10
does not change sign between frequencies 0 and 1), the allele
will be fixed at frequency 1 (or 0). Deriving the long-term
prediction is then fairly straightforward. However, things are
not as simple when the expected change in the frequency of
an allele changes sign depending on the current frequency
(Frank & Slatkin, 1990, see also Fig. 3). If we assume infinitely
large population sizes and a well-mixed population, the

geometric mean genotypic fitness determines which allele
goes to fixation (Dempster, 1955; Levins, 1968; Lewontin &
Cohen, 1969; Frank & Slatkin, 1990; Lande, 2007).

(e) Absolute genotypic fitness to geometric mean fitness

The geometric mean of a series of n random variables (R1,y)
can be written as

G =
( n∏

y=1

R1,y

)1/n

= n
√

R1,1R1,2 · · · R1,n

= exp
(

1
n

n∑
y=1

ln(R1,y)
)

= exp (E[ln(R1,y)]). (13)

The geometric mean is the nth root of the product of
a series of n fitness values, but it can also be written as
the exponential of the arithmetic mean log fitness. This is
where Jensen’s inequality comes into play. Logarithms are
concave functions, and since the last term in (Equation 13)
is the expectation of a log-transformed variable, the negative
deviances in R1,y will decrease the geometric mean more
than positive deviances will increase it.

We can approximate the geometric mean fitness of a
genotype/allele using the first two moments (i.e. the mean
and variance) of the distribution of the absolute genotypic
fitnesses, if we assume that the deviances (δGeno,y) are small
(variance σ 2

Geno) and denoting the arithmetic mean fitness as
μGeno (note that the subscript Geno refers to measures at the
level of the genotype and not the individual level, i.e. σ 2

Geno
is the genotypic fitness variance).

E[ln(RGeno,y)] = E

[
ln

(
μGeno

(
1 + δGeno,y

μGeno

))]

= E[ln(μGeno)] + E

[
ln

(
1 + δGeno,y

μGeno

)]
. (14)

Then using the expansion (ln(1 + x) = x − x2/2 + · · ·) on
the second term above gives

E

[
ln

(
1 + δGeno,y

μGeno

)]

= E

[
δGeno,y

μGeno

− 1
2

(
δGeno,y

μGeno

)2

+ · · ·
]

≈ − σ 2
Geno

2μ2
Geno

, (15)

while noting that ex = 1 + x + x2/2 + · · ·

G ≈ exp

(
E[ln(μGeno)] + E

[
δGeno,y

μGeno

−
(

δGeno,y

μGeno

)2

+ · · ·
])

= μGeno

(
1 − σ 2

Geno

2μ2
Geno

)
= μGeno − σ 2

Geno

2μGeno

(16)

gives the commonly used approximation for the geometric
mean. It is now obvious that increasing the variance in the
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absolute fitness values of a genotype will decrease the geomet-
ric mean. It is important to realize that the variance above
(σ 2

Geno) refers to genotypic variance, which in our framework
is the product of between-individual correlation (ρi ) and the
individual-level variance (σ 2

i in Equations 7 and 8). In the
case of full correlation (i.e. no difference in fitness between
individuals within the same year, ρi = 1), these have the
same value.

The geometric mean fitness of an allele can then be
approximated by

Gi = μi − Var(Ri )
2μi

= μi − ρiσ
2
i

2μi

. (17)

This is a recapitulation of the principle (Equation 10) that
the success of a strategy depends on the mean arithmetic
fitness, on the individual variance in reproductive success,
and on the correlation between individuals.

However, Equation 17 itself is an approximation. When
the population sizes are finite (and particularly small), then
it is not correct to state that the geometric mean predicts the
fixation of an allele (Gillespie, 1974a; Frank & Slatkin, 1990;
Proulx & Day, 2001). For instance, if fitnesses for individuals
of a genotype are independent in a finite population (giving an
average correlation of ρi = 1/qiN ) the condition for fixation
of allele 1 is (Gillespie, 1974a; Frank & Slatkin, 1990)

μ1 − σ 2
1

N
> μ2 − σ 2

2

N
. (18)

This differs from the geometric mean fitness, contrary
to common belief (as held by e.g. Hopper, 1999; Hop-
per et al., 2003), which in this case is approximately
Gi ≈ μi − σ 2

i /2N μi. As population sizes become larger, the
effect of individual-level variance decreases in both cases, and
for infinitely large population sizes, the geometric mean (and
Equation 18) is identical to the arithmetic mean for uncor-
related fitness values among individuals (see Appendix 1).

To return to our initial example of eggs in flooding nests:
in large, well-mixed populations it does not matter whether
a mother lays her eggs in one or two nests. Natural selection
in this case has a large enough sample size to ‘see’ that failing
nests produced by the ‘all eggs in one basket’ genotype are
exactly compensated by an equally large number of successful
nests. The need to spread the risk disappears as the worst-case
scenario where all nests fail (for a whole genotype) becomes
exceedingly improbable due to the sheer number of nesting
attempts. Mathematically, the effect of variation in nest
success becomes insignificant in this case because the number
of individuals is very large. Even a small cost of building and
maintaining multiple nests would then be sufficient for bet-
hedging to be selected against, or conversely, if there are
direct benefits to using multiple nests these will dominate
[e.g. in the context of conspecific brood parasitism, Pöysä
& Pesonen (2007) show that conspecific brood parasitism
evolves much more easily if it increases offspring survival via
assessment of nest-specific predation risk, than if eggs are
laid randomly]. This argument also makes it doubtful that

bet-hedging alone works as a sole explanation for multiple
mating, if it is associated with any costs, since each female
will ‘sample’ the distribution of male quality independently
[for a detailed investigation of this in the context of fertility
insurance, see Hasson & Stone (2009) and Yasui (2001)].

(2) Returning to the dry and wet year example

Equation 10 yields a number of observations for our rainfall
example. First, comparing the two specialists Adry and
Awet, their expected fitness reaches the values μdry = 0.79
and μwet = 0.80. The between-individual correlations are
ρdry = 1 for individuals with allele Adry, and ρwet = 1 for
genotype Awet, since within a year all individuals have the
same fitness, but it varies among years.

We can now see the implicit frequency dependence of the
success of genotypes (Fig. 3) by plotting the expected change
(Equation 10) in the frequency of Adry against its current
frequency in a population consisting of specialists only (Awet
and Adry). Even though the model incorporates no change
in arithmetic (or geometric) mean fitness that depends on
the genotypes of the competitors, the expected change is
not independent of frequency, due to the variance terms in
Equation 10. Note that the correlation between individuals
of the alleles Adry and Awet (ρ12) is −1, since the conditions
that predict high fitness for the dry-adapted genotype also
predict low fitness for the wet-adapted one, and vice versa.

(3) Conservative versus diversified bet-hedging

Expressing the variance in genotypic fitness as a function
that increases with the correlation between individuals as
well as with the variance in individual reproductive success
(equation 7–9) gives a clear theoretical underpinning for
the differences between conservative and diversified bet-
hedging strategies. In the case of the generalist strategy Agen,
the genotypic variance, var(Rgen), is reduced, as individuals
always do reasonably well regardless of circumstances (small
individual-level variance σ 2

gen in Equation 7). This is a clear
case of the ‘bird in the hand’ metaphor, which makes the
term ‘conservative bet-hedging strategy’ appropriate (Seger
& Brockmann, 1987; Philippi & Seger, 1989). The Adiv
allele achieves the reduction in the genotypic variance in
a different way. This bet-hedger largely fails to reduce the
variance of individual fitness, as individuals of genotype
Adiv experience almost the same variance in individual
success as genotypes Awet and Adry. The majority of the
reduction of genotypic variance of the Adiv allele is instead
achieved by reducing the correlation (ρdiv) of reproductive
success between individuals who share the same allele. Two
randomly picked Adiv individuals will not all have the same
reproductive success within a year: some will have developed
drought resistance, while others will have opted for the wet-
adapted phenotype. This example follows the ‘eggs in one
basket’ metaphor—different ‘baskets’ (phenotypes) reduce
the correlation between the expected fitness of individuals.

Adiv, the diversifying genotype posited in Table 1, is a
genotype that within any generation gives rise to both dry-
year and wet-year specialists. Individuals of this genotype
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can be considered to ‘flip’ a (biased) coin to determine
which phenotype they develop into (Cooper & Kaplan,
1982; Kaplan & Cooper, 1984; Seger & Brockmann,
1987). In the example, drawn from Seger & Brockmann
(1987), the Adiv genotype gives rise to dry-year specialist
individuals with a probability 0.44, and the arithmetic and
geometric mean fitness of this genotype were calculated using
P (dry year) = P (wet year) = 1/2.

μdiv = P (dry year) × (0.44 × 1 + 0.56 × 0.6) + P (wet year)

× (0.44 × 0.58 + 0.56 × 1) = 0.7956, (19)

Gdiv = (0.44 × 1 + 0.56 × 0.6)P (dry year)

× (0.44 × 1 + 0.56 × 0.6)P (wet year) = 0.7954. (20)

To exemplify our use of individual-level variance and
correlation, we will generalize this diversified strategy with a
parameter d scaling the probability of an individual of this
genotype developing into a dry-year specialist. In Fig. 4A,
values d = 0.44 (and consequently 1–d = 0.56) correspond
to the above calculations and show the arithmetic (full
line) and geometric mean (dashed line) genotypic fitness
of this generalized diversified strategy. Inspecting the same
graphs at d = 0 and d = 1 gives these values for the wet-
and dry-year specialists Awet and Adry, respectively. Fig. 4B
shows the individual-level variance for different degrees of
diversification, and Fig. 4C shows the between-individual
correlation. The geometric mean can both be calculated
directly (as above) or approximated (see Section II.1e) by:

Gdiv ≈ μdiv − ρdivσ
2
div

2μdiv
. (21)

Here the variance (σ 2
div) indicates the variance at the level

of an individual. This variance is calculated directly from the
fitness values and their probability of occuring. Letting pD

and pW represent the probabilities of a dry and a wet year,
respectively, and WDYS|D be the individual absolute fitness for
a dry-year specialist in a dry year (and similarly for wet-year
specialists (WYS) and wet years (W). The variance is

σ 2
div = pD(d × (WDYS|D − μdiv)2 + (1 − d )

× (WWYS|D − μdiv)2) + pW (d × (WDYS|W − μdiv)2

+ (1 − d ) × (WWYS|W − μdiv)2). (22)

The correlation is defined as the covariance divided by
the variance. Covariance can be expressed as Cov(x, y) =
E(xy) − E(x)E(y), which gives the correlation

ρdiv = 1

σ 2
div

[(pD(d2W 2
DYS|D + 2d (1 − d )WDYS|DWWYS|D

+ (1 − d )2W 2
WYS|D) + pW (d2W 2

DYS|W
+ 2d (1−d )WDYS|W WWYS|W + (1−d )2W 2

WYS|W ) − μ2
div].
(23)

Fig. 4. The diversified allele Adiv generalized. d scales the
proportion of individuals which develop into the dry-year-
specialist phenotype. (A) Arithmetic (μdiv, full line) and
geometric mean fitness (Gdiv, dashed line). (B) The variance
in fitness at the level of the individual (σ 2

div). (C) The correlation
among individuals (ρdiv). The corresponding values can also be
found for allele Adry (at d = 1), and Awet (d = 0). An allele with
a diversified d such that the probability of developing into a
dry-year-specialist phenotype d = 0.44 , is the optimal one in
this setting. The environment is considered coarse-grained, i.e.
only temporal variability exists in the fitnesses of the phenotypes.

As is seen from this example, the diversified bet-hedging
genotype achieved higher geometric mean fitness by reducing
the correlation between the individuals of that genotype. If it
invades a wet-year specialist (d = 0), this is achieved despite
actually increasing the individual-level variance.

III. FROM EQUATIONS TO CONCLUSIONS:
WHAT CAN WE SAY ABOUT THE DIFFERENT
CATEGORIES OF BET-HEDGING?

(1) Conservative versus diversifying—endpoints
of a continuum

Traditionally, bet-hedging strategies have been divided into
conservative and diversified strategies (Seger & Brockmann,
1987; Philippi & Seger, 1989; Hopper, 1999; Hopper et al.,
2003; Rees, Metcalf & Childs, 2010). We have (Equations 7,
8) expressed the genotypic variance in fitness as a product
of the individual-level variance in expected reproductive
success and the correlation among individuals of the same
genotype. This helps to (re-)define the different types of bet-
hedging. A conservative bet-hedging genotype overcomes the
cost of having a lower arithmetic mean fitness by reducing
the variance in fitness σ 2

i that each individual can expect
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(Equations 10, 17). Diversifying bet-hedging achieves the
same by reducing the correlations (ρi ) between the expected
fitness achieved by different individuals.

Ecology and evolution are fraught with false dichotomies
(for some examples, see Peters, 1991), and we believe
that treating the different categories of bet-hedging as
mutually exclusive would lead to this very trap. Given
similar arithmetic mean fitnesses, a reduced variance at
the level of the genotype is favoured regardless of whether
this comes about through a reduction of expected fitness
for each individual of this genotype, a reduction in the
correlations among individuals, or a combination of both. In
our rainfall example, the diversified bet-hedging allele Adiv
achieves a higher geometric mean fitness by a reduction in
both correlation and individual-level variance if invading a
population of dry-year specialists (Fig. 4, compare middle
panel at d = 1 and d < 1). Thus, while at the extremes one
can usefully speak of two different kinds of bet-hedging, there
are all possible mixtures as well. This is often overlooked (e.g.
Rees et al., 2010).

(2) Between- versus within-generation bet-hedging

Bet-hedging strategies are also often categorized into
between- and within-generation strategies (Hopper, 1999;
Hopper et al., 2003), often differentiated by the ‘grain’ of the
environment (Levins, 1968; Hopper, 1999). In a very coarse-
grained environment all individuals experience one type of
environment, but over longer time scales the descendants
may live in a different type of environment; this is often
interpreted as the environment varying temporally. In a
very fine-grained environment, individuals may experience
all possible variations of the environment at the same time,
thus assuming sufficient dispersal, this type of environmental
variation is often equated with spatial variation (Levins, 1968;
Seger & Brockmann, 1987).

In our exposition of the rainfall model, we assumed that the
environment is coarse-grained: all individuals experienced
either dry or wet conditions in any given year. This made
the ‘eggs in one basket’ argument strong, since a lineage
cannot survive if all its descendants perform very poorly
in some years. At a different extreme, we could imagine
a fine-grained environment where rainfall is very patchy
such that individuals of the same generation differ in the
conditions they experience. Since, as explained above, this
is easier to achieve with spatial than temporal variation, the
fine-grained environment is also often associated with within-
generation bet-hedging, and coarse-grained environments
correspondingly with between-generation bet-hedging.

All else being equal, coarser grain selects for bet-hedging
far more strongly than a fine grain. A fine grain, i.e.
spatial variability that occurs at a sufficiently fine scale such
that offspring disperse to a diversity of habitats, would not
affect the expected fitness or the variance at the individual
level (σ 2

i ), but it strongly reduces the fitness correlations
between individuals, since in any given year individuals
of the same genotype would not experience the same
environment. For any given dispersal regime, then, it is

hard for an individual to gain any further advantage by
bet-hedging because the between-individual correlations (ρi )
within a genotype (Equations 7–10) is already reduced to
its minimum, 1/(qiN ), assuming that the fraction of dry
and wet (micro-) environments within a year stays constant
across years (see Appendix 1). Note that if N is very large,
the correlations approach 0. This correlation (ρi = 1/qiN

also removes the implicit frequency dependence, because it
is inversely dependent on the number of individuals of a
particular genotype (qi ).

The above reasoning is the main reason why within-
generation bet-hedging has been portrayed as unlikely
(Hopper et al., 2003). It is often thought to be an insufficient
explanation for the appearance of diversified strategies.
Such strategies evolve by virtue of reducing the correlation
between individuals, but in large panmictic populations this
correlation is already minimal because individuals of the
same genetic lineage experience different environments in
the same year. There is little room for any further reduction
of genotypic variance (Hopper, 1999; Hopper et al., 2003).
This holds for fine-grained environments (Gillespie, 1974a,
1975), i.e. when there is no variability over time, but as
soon as there is some temporal variation there is scope for a
coarser grain and thus more potential for bet-hedging.

Of course, if there are no costs (i.e. the arithmetic means
are the same), reduction in genotypic variance is always
favoured. This can make it tempting to argue in favour
of bet-hedging even if the environment is fine-grained—the
variance in reproductive success will be smaller than when the
grain is coarse, but there may still be room for improvement
(i.e. reduction) with little cost. However, when differences in
variances are minimal, bet-hedging is very easily trumped by
any magnitude of costs, i.e. changes in the arithmetic mean.

It is, however, important to realize what a fine-grained
environment entails in this perspective. In essence, each indi-
vidual experiences either a dry or wet environment, but they
all compete globally for representation in the next genera-
tion. If, on the other hand, one assumed competition to occur
within each patch (for example within the patches in Fig. 5),
the calculations would change (see Frank & Slatkin, 1990).
For instance, such a Levene-type model can potentially give
rise to coexistence, such that two alleles can coexist indefi-
nitely and one would not necessarily go to fixation (Gillespie,
1974b; Levene, 1953; Frank & Slatkin, 1990). This sort of
dynamics would occur if dispersal of individuals among these
patches happened after local competition, such that each
patch contributes an equal number of individuals to the whole
population, regardless of the quality of the local environment.

An interesting thought is that dispersal itself can be viewed
as a diversified bet-hedging strategy if dispersal is costly
but helps to reduce the correlation of success of individuals
of a lineage. The above reasoning why traits that reduce
the correlation in fitness among individuals do not have
much room to operate is valid if we assume that dispersal
has already reduced environmental grain to a fine level
(i.e. organisms spread themselves over all available habitat
types in each generation). But dispersal itself is a trait that
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Year 1 Year 2 Year 3 Year 4

Fig. 5. Grain of the environment. Coarse-grained environ-
ments are recognized by only temporal variability; within a year
all microenvironments or conditions experienced are either dry
(white) or wet (grey). For fine-grained environments there is
no temporal variability, and environments are steady in their
composition over time (Pdry = 1/2 , for all years). Medium-grain
environments are characterized by a mixture, with both spatial
and temporal variability (middle row). The ρi values to the right
are the correlations for the genotypes Adry and Awet depending
on the grain for infinite population sizes. In finite populations
the correlation in the fine grain is ρi = 1/qiN , where qi is the fre-
quency of the genotype and N is the population size, removing
the ‘implicit’ frequency dependence in Equation 10.

can adaptively reduce this correlation—which happens if
dispersal is not initially distributing individuals sufficiently
across space before competition. Organisms then evolve to
disperse more, partially because this reduces the correlation
between individual reproductive successes. Since this may
also reduce the mean success (dispersal is often costly), the
definition of bet-hedging is satisfied. After this evolutionary
change, the organism now experiences the scale of the
grain differently. Effectively, environments become finer
scaled as organisms evolve to distribute themselves across
available habitats, and intriguingly this could mean that the
scope for other bet-hedging strategies becomes smaller. In
other words, lineages disperse to achieve a long-term fitness
closer to the arithmetic mean (Kisdi, 2002) through reducing
the between-individual correlation. Obviously, dispersal is
not solely determined through a bet-hedging effect (kin
interactions and density dependence also play a huge role,
e.g. Hamilton & May, 1977; Clobert et al., 2001; Ronce,
2007), but bet-hedging is clearly relevant to all arguments
of dispersal that make use of the fact that a population’s
persistence becomes compromised if its individuals never
leave the local patch. It also follows that if the effects of
dispersal distance on individual variance are sex-specific, a
sex bias in dispersal may evolve (Guillaume & Perrin, 2009).

(3) Between- and within-generation
bet-hedging—not mutually exclusive either

In our model between-generation bet-hedging evolves more
easily than within-generation bet-hedging, because a coarse

grain creates more scope for selection against variance. The
correlation between individuals can in many coarse-grained
cases be much larger than 1/qiN It is interesting that the
language of ‘within’ versus ‘between’ generation bet-hedging
suggests two distinct processes, while thinking about the grain
of the environment makes it much clearer that environments
do not have to be fully coarse-grained or fine-grained. For
example, in our rainfall example the environment might con-
sist of a mixture of dry and wet (micro-)environments within
any given year, and the proportion of these might vary over
time (see Fig. 5). In such a case, any strategy that invades due
to a reduction in genotypic variance in fitness (and reduced
mean fitness) can be considered a bet-hedging strategy that
combines features of within- and between-generation bet-
hedging.

This point can be reiterated with an example. Consider
a system in which the environment varies temporally and
spatially between wet and dry (i.e. medium-grained environ-
ment). We posit two kinds of years, predominantly wet or
predominantly dry, such that the fractions of dry environ-
ments within a year are 1/4 and 3/4, respectively (as in Fig. 5,
middle row). These years occur with equal frequency and no
temporal autocorrelation. In such a setting, even in infinitely
large populations, the correlation among individuals exceeds
0 for all strategies except the diversified strategy Adiv with
d = 0.49 (see Fig. 6). The correlations for alleles Awet and
Adry can again be read off at d = 0 and d = 1 , respectively:
these correlations both equal 1/4. That the grain of the envi-
ronment is ‘finer’ than in our initial example can also be seen
in the fact that the geometric mean fitness is now closer to
the arithmetic fitness (compare Figs 4 and 6, note the change
in scale on the y-axis).

The optimal strategy in this setting (d = 0.298) combines
features of within- and between-generation bet-hedging. All
individuals do not experience the same environment within
a year, but the correlations between individual fitness values
are also larger than 0. Also note that even though the
correlation among individuals of this optimal diversified
strategy is lower than for the specialists (d = 1 or d = 0),
it does not reach its minimum; the genotypic variance is
the product of the correlation and the variance, and the
trade-off between the mean, variance and correlation need
not minimize (or maximize) any of them.

IV. DISCUSSION

Bet-hedging is often expressed as a trade-off between the
mean and variance that a strategy achieves (e.g. Proulx, 2000;
Childs et al., 2010). However, here we have shown that the
trade-off is not two-way but has a triple nature. Bet-hedging
can be a successful strategy despite a reduction in arithmetic
mean fitness if it reduces either the individual-level variance
in fitness or the fitness correlations between individuals of
the same genetic lineage—or both simultaneously. This
viewpoint also makes the boundaries between different
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Fig. 6. The diversified allele Adiv generalized in a medium-
grained environment. A system where there are two kinds of
years: predominantly dry (Pdry = 3/4 ) or wet (Pdry = 1/4 ) as in
middle row of Fig. 5. The years happen in equal frequencies
without autocorrelation. (A) Geometric G and arithmetic μ
mean fitness of a strategy that produces d fraction of individuals
with the dry-year specialist morph. (B) Individual-level variance
in fitness (σ 2). (C) Correlation among individuals (ρ) of the
genotype. Though any year has a mixture of both dry and
wet patches, a diversified strategy has a higher geometric mean
fitness than the two specialist alleles (Adry, at dV = 1, and Awet at
d = 0). Note the different scales in A and C compared to Fig. 4.

types of bet-hedging more fluid. Traditionally, bet-
hedging strategies have been divided into conservative and
diversifying (sometimes with explicit statements that one
of these is much more likely than the other, e.g. Einum
& Fleming, 2004), whereas our analysis shows that a bet-
hedger’s benefit can arise through a combination of both.
In our rainfall example, the allele Adivthat creates dry-
and wet-adapted individuals in each generation achieves a
higher geometric mean than the dry-year specialist through
a reduction in the correlation in fitness between individuals
with this allele and a reduction in the individual-level variance
in reproductive success, thus it is effectively a mixture of
conservative and diversifying bet-hedging strategists.

Bet-hedging strategies are also often categorized into
within-generation and between-generation strategies, but
here, too, our analyses show that these are more
appropriately seen as two ends of a continuum. Between-
generation bet-hedging can occur in coarse-grain envi-
ronments, where the environmental conditions vary
only temporally, and within generations in fine-grained
environments where spatial variation is important. Many
environments are medium-grained, exhibiting a combina-
tion of temporal and spatial variability.

Throughout, we have made use of a very simple model
of dry and wet years to illustrate the properties of these

strategies. The insights gained can nevertheless also be
used better to understand previous models invoking bet-
hedging explanations, and in many cases, we believe that an
explicitly combined look at both types of benefits yields more
insight than a focus on one benefit only. For example, in
an analysis of germination strategies and dormancy, Cohen
(1966) examined the evolution of strategies that spread the
germination of seeds over several years. In the light of
our perspective, the optimality of this type of bet-hedging
arises through a reduction in the correlation among the
individual seeds of a particular lineage. This model assumes
a coarse-grained environment where seeds would all have
the same fitness if they all germinated within the same
year. Recent analyses of systems with bet-hedging as an
explanation of germination strategies (e.g. Simons, 2009)
include variation in fitness across as well as within years.
This provides a more complete look at the question: it
makes the environment of this system medium-grained, and
intriguingly this possibly reduces the need for bet-hedging
arguments, since correlations among individuals germinating
the same year will not be 1 as they were in Cohen’s model.

We suggest that there is much scope for interpreting
the numerous real-life examples of bet-hedging such that
the relative roles of reduced individual-level variance and
between-individual correlations are explicitly investigated.
The scale of dispersal is of paramount importance here,
since between-individual correlations are expected to be low
to begin with if dispersal is already efficiently ‘‘hedging the
bets’’ of genotype success in each generation by spreading
individuals to different environments. The corollary is that
there can be an intriguing trade-off between evolving a higher
dispersal rate or longer dispersal distance and any other bet-
hedging trait; an organism that hedges bets successfully with
one method will not ‘need’ to bet-hedge as much with
another (see for instance Venable & Lawlor, 1980; Snyder,
2006; Siewert & Tielborger, 2010). Crean & Marshall (2009)
suggest that bet-hedging in the form of a maternal effect
that diversifies offspring size should occur in a range of
organisms, possibly in combination with making dispersal
capacity unequal among the offspring (another type of bet-
hedging). Their review points to a sea slug (Alderia modesta)
study where mothers that produce dispersive offspring that
feed exhibit higher levels of within-clutch variation in
offspring size than mothers of the same species that produce
far less dispersive, non-feeding offspring (Krug, 1998); such
within-species variation is unexpected based on our simplistic
prediction above, highlighting the need for further work.

As another example of bet-hedging, multiple mating has
been proposed as a behaviour that is beneficial through
individual females ‘diversifying’ their eggs over several males
(Fox & Rauter, 2003; Forsman, Ahnesjo & Caesar, 2007),
avoiding the risk of mating with a low-quality male. In the
model presented here, the environment can be considered
fine-grained if the quality of males is constant across years
and competition among offspring is global. In such an
environment the correlation among these mating females
is already at its minimum, and if there is only a slight cost
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of mating multiply, multiple mating is only favoured by bet-
hedging mechanisms for small population sizes (Yasui, 2001).

Ideas of bet-hedging are often invoked for any behaviour
that is ‘diversified’, but it is important to realize that bet-
hedging is defined through its three effects listed above
(reduced arithmetic mean together with a reduced variance
and/or between-individual correlation in fitness), and there
are many instances of ‘diversification’ that bring about a ben-
efit via other mechanisms than actual bet-hedging. Multiple
mating, for example, can also be selected for to increase the
genetic diversity within a clutch to reduce kin competition
among the individual offspring (Forsman et al., 2007), and
obviously there are many explanations of multiple mating
that are solely based on increasing numbers of offspring for
either males or females (Arnqvist & Nilsson, 2000; Jennions
& Petrie, 2000; Panova et al., 2010). The evolutionary benefit
of ‘spreading’ offspring across time and space could similarly
be based on the direct effect of reduced kin competition in
contexts such as dormancy and dispersal (Hamilton & May,
1977; Venable & Lawlor, 1980; Ellner, 1986). In many cases
such diversification will also reduce the correlation among
individuals, yet it need not be a bet-hedging strategy. Strictly
speaking, a bet-hedging strategy requires a reduction in the
arithmetic mean coupled with a reduction in individual level
variance, correlation among individuals, or both.

V. CONCLUSIONS

(1) Bet-hedging strategies increase their own probability
of fixation through a reduction in genotypic mean fitness
accompanied by a reduced genotypic variance in fitness.

(2) Reduction in genotypic fitness variance can be
accomplished through a reduction in the variance of fitness
at the level of the individual, a reduction in the correlation of
fitness between individuals of a genotype or a combination of
both. This also implies that reduction in genotypic fitness can
be achieved despite an increase in individual-level variance
(or correlation) as long as correlations (or individual-level
variance) are similarly decreased.

(3) Conservative bet-hedging strategies are recognized by
a reduction in individual-level variance in fitness.

(4) Diversified bet-hedging strategies are recognized by a
reduction in between-individual correlations in fitness.

(5) Since individual-level variance and between-
individual correlations can be changed independently, con-
servative and diversified bet-hedging strategies is a false
dichotomy; they are better viewed as two extremes. Possible
bet-hedging strategies can incorporate any combination of
individual-level variance and correlation that reduces geno-
typic variance in fitness. It is also important to keep in
mind that a comparison of strategies can lead to one being
superior in having both a higher mean and lower fitness vari-
ance; there is then no trade-off between these components
predicting evolutionary success.

(6) Between-individual correlations depend on the grain
of the environment; within-generation bet-hedging can occur

under a fine-grained environment, effectively reducing the
correlation in fitness between individuals to its minimum
(inversely proportional to the population size).

(7) Within-generation and between-generation bet-
hedging is also a false dichotomy; bet-hedging strategies can
occur under any grain of the environment effectively being
a combination of between-generation and within-generation
characteristics.
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VII. APPENDIX 1. DERIVATION OF THE
GENERAL MODEL

We posit a population of size N with two alleles at a haploid
locus (with frequencies q1 and q2) and denote the genotypic
mean absolute fitnesses (or mean reproductive successes) as

R1 = 1
Nq1

Nq1∑
j=1

μ1 + α1,j = μ1 + ᾱ1, (A1)

R2 = 1
Nq2

Nq2∑
j=1

μ2 + α2,j = μ2 + ᾱ2. (A2)

Where μi represents the arithmetic mean absolute fitness
of an individual of the ith genotype, and αi,jdenotes the
deviation from this expectation for the jth individual of the
ith genotype. For a given year ᾱidenotes mean deviation for
the genotype. We also have

R̄ = q1R1 + q2R2 (A3)

which is the mean absolute fitness in the population. The
frequency of the first genotype in the next generation will be

q ′
1 = q1

R1

R̄
. (A4)

This is where trouble arises in the view of fitness as
a random variable, because a ratio of random variables
is difficult to deal with. We continue by stating that the
expected change in the frequency of the first allele will be

E[�q1] = E[q′
1] − q1 = E

[
q1R1

R̄

]
− q1 (A5)

where E is taken to mean expectation. We rearrange this
as done in most population genetics treatments (see e.g.
Rice, 2004)

E

[
q1R1

R̄

]
− q1 = E

[
q1R1

R̄

]
− q1E[R]

E[R]

= E

[
q1R1 − q1E[R̄]

R̄

]
= E

[
q1R1 − q1(q1R1 + q2R2)

R̄

]
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= E

[
q1(R1(1 − q1) − q2R2)

R̄

]
= E

[
q1(R1q2 − q2R2)

R̄

]

= E

[
q1q2(R1 − R2)

R̄

]
(A6)

On this last expression we will use the delta-method (e.g.
Lynch & Walsh, 1998; Rice & Papadopoulos, 2009) to
expand this in a series. An expression for the expectation of
a ratio of two random variables a and b is given by

E

[a

b

]
= E[a]

E[b]
+

∞∑
k=1

(−1)k
E[a] � kb � + � a, kb �

E[b]k+1
.

(A7)

Here � � denotes higher moments. For instance � kb �
is the kth central moment of the random variable b, which
for k = 1 is zero, for k = 2 is the variance. Mixed moments
are defined as

� a, kb �= E{[a − E(a)][b − E(b)]k} (A8)

which for k = 1 is the covariance between a and b.
We can here put in R1 for a and R̄ for b. Then using the

expansion A7 on A6 we get

E

[
q1q2(R1 − R2)
q1R1 + q2R2

]
= E[q1q2(R1 − R2)]

E[q1R1 + q2R2]

+
∞∑

k=1

(−1)k

E[q1q2(R1 − R2)] � kR �
+ � q1q2(R1 − R2),k R �

E[R̄]k+1
(A9)

The 1st central moment of R̄ is 0 (so the first part in the
numerator is 0 for k = 1), and assuming the higher orders
are negligible, we are only interested in the first part of this
sum, we need the 1st mixed moment, i.e.

� q1q2(R1 − R2), 1R �= Cov(q1q2(R1 − R2), R). (A10)

One nice rule about covariances of a sum of random
variables is

Cov(aX + bY , cW + dV ) = acCov(X , W ) + adCov(X , V )

+bcCov(Y , W ) + bdCov(Y , V ),
(A11)

we want:

Cov(q1q2R1 − q1q2R2, q1R1 + q2R2). (A12)

Substituting a = q1q2, b = −q1q2, c = q1, d = q2 and = W =
R1, Y = V = R2 in A11 this covariance becomes:

Cov(q1q2R1 − q1q2R2, q1R1 + q2R2) = q2
1q2Cov(R1, R1)

+ q1q2
2Cov(R1, R2) − q2

1q2Cov(R2, R1) − q1q2
2Cov(R2, R2)

(A13)

and, since Cov(x, x) = Var(x) and Cov(x, y) = Cov(y, x), this is:

Cov(q1q2R1 − q1q2R2, q1R1 + q2R2)

= q1q2(q1Var(R1) − q2Var(R2) + (q2 − q1)Cov(R1, R2))
(A14)

Thus keeping only the first two terms in the expansion above
we get:

E

[
q1q2(R1 − R2)
q1R1 + q2R2

]
≈ E + [q1q2(R1 − R2)]

E[q1R1 + q2R2]

+ q1q2(q2Var(R2) − q1Var(R1) + (q1 − q2)Cov(R1, R2))
E[q1R1 + q2R2]2

(A15)

Note the change of − into + before the last fraction and
inside it.

Assuming that μ̄ = q1μ1 + q2μ2 ≈ 1, , the denominators
are both 1. In addition, since the allele frequences are not
random variables they can be taken out of the expectations
and we get:

E

[
q1q2(R1 − R2)
q1R1 + q2R2

]
≈ q1q2{(μ1 − μ2)

+ [q2Var(R2) − q1Var(R1) + (q1 − q2)Cov(R1)]} (A16)

This is identical to Frank & Slatkin’s (1990) Equation 7.
We go on to note that we started with introducing

individual deviances from the mean reproductive success
of a genotype (αi,j ) and that the genotypic variances and
covariance can be written as:

Var(Ri ) = ρiσ
2
i ; (A17)

Cov(R1, R2) = ρ12σ1σ2. (A18)

These variances are the way Frank & Slatkin (1990)
originally presented them, but they deserve some elaboration.
Strictly speaking, the relation between the variance of a mean
of n random variables with equal variance and the variances
of the individual random variables is

Var(X̄ ) = σ 2

n
+ n − 1

n
ρ̄σ 2 = σ 2

(
1
n

+ n − 1
n

ρ̄

)
(A19)

where σ 2 is the variance of the individual random variables
and ρ̄ is the average correlation between the variables. Stricly
speaking, we (in A17) use the correlation as

ρi =
(

1
Nqi

+ Nqi − 1
Nqi

ρ̄

)
. (A20)

This means that for a given genotype the minimum value
possible for this between-individual correlation is 1/Nqi ,
which is the case if all individuals of the ith genotype have
mean (ρ̄) correlation of 0 (which this mean can not be
lower than). For large population sizes, these measures are
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practically identical. Note, however, that the correlation
across genotypes can take any value between 1 and −1.

Above we assumed that the higher orders of the series
expansion was negligible, by keeping only the first term of
the infinite series in Equation A9. Technically speaking, this
is not always justifiable, since the series need not converge
quickly enough. For examples of when these higher orders
become important for predicting allele changes, see Rice
(2008) and Rice & Papadopoulos (2009).
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